我所理解的monad(2):fold与monoid

在Scala中的核心数据结构List中,定义了fold操作,实际上这些方法是定义在scala集合库的最顶层特质GenTraversableOnce中的:

List中的左折叠(借用wiki上的图):

def foldLeft[B](z: B)(op: (B, A) => B): B

从图中可以看到,左折叠是用一个初始元素z从List的左边第一个元素开始操作,一直到对所有的元素都操作完。

现在我们对一个List进行累加操作:

scala> List("A","B","C").foldLeft("")(_+_)
res5: String = ABC

上面foldLeft传入的两个参数空字符串,以及二元操作函数 _+_ 不正好符合字符串monoid的定义吗?

object StringMonoid extends Monoid[String] {
    def append(a: String, b: String) = a + b
    def zero = ""
}

StringMonoid来代入:

scala> List("A","B","C").foldLeft(StringMonoid.zero)(StringMonoid.append)
res7: String = ABC

现在我们对List定义一个累加其元素的方法:

scala> def acc[T](list: List[T], m: Monoid[T]) = {
    list.foldLeft(m.zero)(m.append)
}

再进一步,把第二个参数改为隐式参数

scala> def acc[T](list: List[T])(implicit m: Monoid[T]) = { 
    list.foldLeft(m.zero)(m.append) 
}

现在Monoid成了一个type class,我们还可以再简化写法,用上下文绑定:

scala> def acc[T: Monoid](list: List[T]) = {
    val m = implicitly[Monoid[T]]
    list.foldLeft(m.zero)(m.append) 
}

如果我们在上下文提供了对应隐式值,就等于对List有了这种累加的能力:

scala> implicit val intMonoid = new Monoid[Int] { 
            def append(a: Int, b: Int) = a + b
            def zero = 0 
        }


scala> implicit val strMonoid = new Monoid[String] { 
            def append(a: String, b: String) = a + b
            def zero = ""
        }

scala> acc(List(1,2,3))
res10: Int = 6

scala> acc(List("A","B","C"))
res11: String = ABC

现在我们把Monoid看成基于二元操作(且提供单位元)的计算能力的抽象,不过仅仅是fold操作的话,还看不出它有什么威力。Monoid/SemiGroup中的结合律(associativity)特性才是它的威力所在,这个特性使得并行运算变得容易。

我所理解的monad(1):半群(semigroup)与幺半群(monoid)

google到数学里定义的群(group): G为非空集合,如果在G上定义的二元运算 *,满足

(1)封闭性(Closure):对于任意a,b∈G,有a*b∈G
(2)结合律(Associativity):对于任意a,b,c∈G,有(a*b)*c=a*(b*c)
(3)幺元 (Identity):存在幺元e,使得对于任意a∈G,e*a=a*e=a
(4)逆元:对于任意a∈G,存在逆元a^-1,使得a^-1*a=a*a^-1=e

则称(G,*)是群,简称G是群。

如果仅满足封闭性和结合律,则称G是一个半群(Semigroup);如果仅满足封闭性、结合律并且有幺元,则称G是一个含幺半群(Monoid)。

相比公式还是用代码表达更容易理解,下面表示一个半群(semigroup):

trait SemiGroup[T] {
    def append(a: T, b: T): T
}

特质SemiGroup,定义了一个二元操作的方法append,可以对半群内的任意2个元素结合,且返回值仍属于该半群。

我们看具体的实现,一个Int类型的半群实例:

object IntSemiGroup extends SemiGroup[Int] {
    def append(a: Int, b: Int) = a + b
}

// 对2个元素结合
val r = IntSemiGroup.append(1, 2)

现在在半群的基础上,再增加一个幺元(Identity,也翻译为单位元),吐槽一下,幺元这个中文不知道最早谁起的,Identity能表达的意义(同一、恒等)翻译到中文后完全消失了。

trait Monoid[T] extends SemiGroup[T] {
    // 定义单位元
    def zero: T
}

上面定义了一个幺半群,继承自半群,增加了一个单位元方法,为了容易理解,我们用zero表示,半群里的任何元素a与zero结合,结果仍是a本身。

构造一个Int类型的幺半群实例:

object IntMonoid extends Monoid[Int] {
    // 二元操作
    def append(a: Int, b: Int) = a + b
    // 单位元
    def zero = 0
}

构造一个String类型的幺半群实例:

object StringMonoid extends Monoid[String] {
    def append(a: String, b: String) = a + b
    def zero = ""
}

再构造一个复杂点的 List[T] 的幺半群工厂方法:

def listMonoid[T] = {
    new Monoid[List[T]] { 
        def zero = Nil
        def append(a: List[T], b: List[T]) = a ++ b 
    }
}

OK,现在我们已经了解了幺半群是什么样了,但它有什么用?